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Immunoglobulin A nephropathy (IgAN) is the most common

form of primary glomerulonephritis worldwide. The basic

defect lies within the IgA immune system and in peripheral

blood leukocytes, rather than local kidney abnormalities. To

define the intracellular mechanisms leading to the disease,

we conducted a microarray study to identify genes and

pathways differentially modulated in peripheral blood

leukocytes isolated from 12 IgAN patients and 8 healthy

controls. The genes whose expression discriminated between

the IgAN patients and controls were primarily involved in

canonical WNT–b-catenin and PI3K/Akt pathways. We also

tested peripheral blood mononuclear cells and their

subpopulations isolated from an independent group of IgAN

patients and healthy controls. There were low protein levels

of inversin and PTEN, key regulators of WNT–b-catenin and

PI3K/Akt, in IgAN patients, suggesting hyperactivation of

these pathways. Also, there were increased phospho-Akt

protein levels and nuclear b-catenin accumulation with an

enhanced peripheral blood mononuclear cell proliferation

rate. Subpopulation analysis uncovered a major irregularity

of WNT signaling in monocytes. Hence, hyperactivation of

these pathways may provide insight into mechanisms

contributing to the pathogenesis of IgAN.
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Immunoglobulin A (IgA) nephropathy (IgAN) is the most
common form of primary glomerulonephritis worldwide
among patients undergoing renal biopsy. The diagnosis is
based on the occurrence of mesangial IgA deposits in the
glomeruli and the presence of recurrent episodes of
intrainfectious macroscopic hematuria, or persistent micro-
scopic hematuria, and/or proteinuria.1,2 IgAN is character-
ized by dysregulation of the immune system, leading to an
abnormal deglycosylated IgA1 synthesis, selective mesangial
IgA1 deposition with ensuing mesangial cell proliferation,
and extracellular matrix expansion, through poorly under-
stood molecular mechanisms.3,4 Approximately 40% of IgAN
patients, older than 30 years, develop end-stage renal disease
within 20 years of disease onset.5

Recurrence of IgA deposits in IgAN patients after
transplantation indicates that the basic abnormality of this
condition lies within the IgA immune system, rather than
local kidney abnormalities.6–8 This is further strengthened by
the observation that IgA deposits disappear when a graft
containing mesangial IgA deposits is accidentally trans-
planted in recipients not suffering from IgAN.9

Human IgA production occurs in two distinct immuno-
logical compartments: mucosa and bone marrow; IgA
produced at mucosal surfaces is almost exclusively polymeric
(pIgA). Serum IgA, which is mostly monomeric, arises from
the systemic immune compartment and is mainly produced
in the bone marrow. Immunization studies on IgAN patients
show elevated systemic pIgA secretion in response to both
systemic and mucosal antigens.10–12 Therefore, although the
circulating pIgA in IgAN arises from a systemic source, it may
be driven by mucosally encountered antigens, such as
bacteria and viruses.11,12 This scenario strongly suggests that
an abnormal control of the fine balance between the mucosal
and systemic immune systems may contribute to the
pathogenesis of IgAN.13,14 Hyperesponsiveness of the IgA
immune system in IgAN patients is confirmed by increased
IgA-secreting plasma cell number in both bone marrow
and tonsils.15–17 These cells show a reduced susceptibility to
Fas-mediated apoptosis with marked expression of bcl-2.17

Several research strategies have been used to study
the pathogenesis of this complex disease; however, few
have provided specific descriptions of the intracellular
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mechanisms associated with disease development.18 As
peripheral blood leukocytes (PBLs) of IgAN patients carry
informative disease-specific markers,19 their gene expression
profile was used in our study to screen for new pathways and
mechanisms differently regulated in the disease. We specifi-
cally found an aberrant modulation of WNT–b-catenin and
PI3K/Akt pathways. Further, we observed that these pathways
were hyperactivated in peripheral blood mononuclear cells
(PBMCs) of an independent group of IgAN patients. These
cells were characterized by an increased Akt phosphorylation,
b-catenin nuclear translocation, and proliferation rate.
These results could contribute to shed light into the key
pathogenetic mechanisms of IgAN.

RESULTS
Differences in gene expression between IgAN patients and
healthy subjects

To uncover new molecular mechanisms involved in IgAN
pathogenesis, we compared the genomic profile of PBLs in a
group of 12 IgAN patients and 8 healthy subjects (HS) with
normal renal function, after having their informed consent.
Bioinformatic analysis revealed 210 genes discriminating
IgAN patients from HS (false discovery rate (FDR)-adjusted
P-valueo0.01) (Supplementary Tables S1, S2). The two-
dimensional hierarchical clustering, using the 210 genes,
clearly showed the degree of separation between IgAN
patients and HS (Figure 1). Ingenuity pathway analysis
(IPA) showed that the identified genes were primarily
involved in WNT–b-catenin and PI3K/Akt canonical path-
ways (FDR-adjusted P¼ 0.0039 and P¼ 0.004, respectively)
(Table 1). In addition, the top ranked network included
several genes encoding for regulators of these pathways, for
example, inversin (INV)20 (Figure 2).

We then moved on to investigate whether the identified
set of genes were also able to separate IgAN from other
glomerular diseases. We compared the previously identified
set of genes, discriminating IgAN patients from HS, with the
gene expression profile of PBLs from three focal segmental
glomerulosclerosis patients and from three membranoproli-
ferative glomerulonephritis type I patients. Gene set enrichment
analysis21 (GSEA) identified subsets of 22 and 19 genes specific
for membranoproliferative glomerulonephritis type I and focal
segmental glomerulosclerosis, respectively, and a subset of
21 genes able to specifically separate IgAN from HS and from
both glomerular diseases (FDR-adjusted P-valueo0.05) (Supple-
mentary Figure S1). This subset of genes, specific for IgAN,
was again primarily involved in WNT–b-catenin and PI3K/Akt
canonical pathways (data not shown).
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Figure 1 | 2-Dimensional hierarchical clustering using the top
210 selected genes discriminating 12 immunoglobulin A
nephropathy (IgAN) patients from 8 healthy subjects (HS).
Each column represents a subject and each row a gene probe set.
Probe set signal values were normalized to the mean across the
patients. The relative level of gene expression is depicted from the
lowest (green) to the highest (red), according to the scale shown on
the top. Respective gene symbols are indicated on the right side.
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To further establish the validity of gene expression
determined by microarray analysis, we performed quantita-
tive real-time PCR (RT-PCR) on all patient and HS samples
that were used for the microarray study. We chose two key
regulators of WNT–b-catenin and PI3K/Akt pathways, INV
and phosphatase and tensin homolog (PTEN); mRNA levels
for these genes were found significantly lower in IgAN group
compared with HS subjects (P¼ 0.02, P¼ 0.003, respectively)
(Figure 3a and b). Furthermore, Pearson’s correlation

coefficient between mRNA levels determined by RT-PCR
and microarray was 0.78 for INV (Po0.001) and 0.74 for
PTEN (Po0.002), confirming expression levels determined
by the gene expression array (Figure 3c and d).

INV and PTEN protein levels in IgAN patients

Moving from the modulation of WNT–b-catenin and PI3K/
Akt pathways emerging from gene expression analysis in
PBLs, we then investigated whether the same abnormality

Table 1 | Most representative canonical pathways deregulated in IgAN patients

IPA category
Pathway
P-valuea

Gene
symbol Gene name Probe set ID

PI3K/Akt signaling 0.0040 CSNK1A1 Casein kinase 1, a1 208867_s_at
CTNNB1 Catenin b1 (88 kDa) 201533_at
HSP90AB1 Heat shock protein-a (90 kDa) class B member 1 200064_at
HSP90AA1 Heat shock protein (90 kDa) class A member 1 210211_s_at
PTEN Phosphatase and tensin homolog 204054_at
JAK2 Janus kinase 2 205842_s_at
YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation

protein, z-polypeptide
200641_s_at

WNT–b-catenin
signaling

0.0039 CSNK1A1 Casein kinase 1, a1 208867_s_at

INV Inversin 211055_s_at
CTNNB1 Catenin b1 (88 kDa) 201533_at
SOX3 SRY (sex determining region Y)-box 3 214633_at
TGFBR2 Transforming growth factor, b-receptor II 208944_at
TLE3 Transducin-like enhancer of split 3 (E (sp1) homolog, Drosophila) 212770_at
DVL2 Dishevelled, dsh homolog 2 (Drosophila) 57532_at
MAP3K7 Mitogen-activated protein kinase kinase kinase 7 211537_x_at

Abbreviations: FDR, false discovery rate; IgAN, immunoglobulin A nephropathy; IPA, ingenuity pathway analysis.
aFischer’s exact test was used to calculate the P-value, determining the probability that the association between the genes in the data set and the canonical pathway is
explained by chance alone. To account for multiple canonical pathways tested by IPA, the FDR option was used (FDRo0.1).
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Figure 2 | Functional analysis of the top selected genes identified by microarray. The network was algorithmically constructed by
Ingenuity Pathway Analysis (IPA) software on the basis of the functional and biological connectivity of genes. The network is graphically
represented as nodes (genes) and edges (the biological relationship between genes). Red and green shaded nodes represent up- and
downregulated genes, respectively; others (empty nodes) are those that IPA automatically includes because they are biologically linked to
our genes based on the evidence in the literature. This top ranked network (score 48, n¼ 27 associated genes, Po0.0001, Figure 2) includes
several genes encoding for regulators of the PI3K/Akt pathway (b-catenin (CTNNB1), heat shock protein 90 kDa (HSP90AB1), heat shock
protein 90 kDa alpha, class A member 1 (HSP90AA1) janus kinase 2 (JAK2)) and molecular switches of the WNT–b-catenin pathway (inversin
(INV) and dishevelled, homolog 2 (DVL2)). Meanings of node shapes and edges are indicated in the legend within the figure.
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occurred in PBMCs, a population that is known to be
principally involved in IgAN pathogenesis.22–24 We measured
the protein levels of INV and PTEN in PBMC lysate of IgAN
patients and HS. The INV levels were significantly lower in
IgAN patients (0.29±0.08 INV/b-actin ratio) compared
with HS (0.99±0.2 INV/b-actin ratio, P¼ 0.006) (Figure
4a and b). PTEN was significantly lower in IgAN patients
(0.1150±0.03914 pg/mg of total protein) compared with HS
(0.7100±0.1720 pg/mg of total protein, P¼ 0.007) (Figure 4c).

Intracellular activation of Akt in IgAN patients

To evaluate whether low PTEN expression was associated
with activation of the PI3K/Akt pathway,25,26 we measured

the level of Akt protein phosphorylation in PBMCs of IgAN
patients. We found phosphorylated Akt (p-Akt) to total Akt
ratios significantly higher in IgAN patients (7.372±1.965
p-Akt (pg/ml)/total Akt (ng/ml)) compared with HS
(2.510±0.7530 p-Akt (pg/ml)/total Akt (ng/ml); P¼ 0.04)
(Figure 5a). This result was not due to a difference in total
Akt between IgAN patients and HS (Supplementary Figure S2).

Nuclear b-catenin accumulation in IgAN patients

To assess whether hyperactivation of Akt and the down-
regulation of INV may induce nuclear b-catenin accumula-
tion20,27 in IgAN patients, we measured the level of nuclear
translocation of this protein in PBMCs isolated from both
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Figure 3 | Inversin (INV) and phosphatase and tensin homolog (PTEN) gene expression levels evaluated by reverse transcriptase PCR
(RT-PCR) directly correlate with microarray expression data in 12 immunoglobulin A nephropathy (IgAN) patients and 8 healthy
subjects (HS). The histograms represent the mean±s.e.m. of the relative normalized protein expression of each protein evaluated by
RT-PCR; INV (a) and PTEN (b) protein levels are significantly lower in 12 IgAN patients compared with 8 HS (*P¼ 0.019, **P¼ 0.003,
respectively). The mRNA levels for the gene INV (c) and PTEN (d) determined by quantitative RT-PCR (qRT-PCR) correlate with microarray
expression scores (Pearson’s r for INV¼ 0.78; P¼ 0.0001 and PTEN¼ 0.74; P¼ 0.0002; data are shown as log2).
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Figure 4 | Inversin (INV) and phosphatase and tensin homolog (PTEN) protein expression levels in peripheral blood mononuclear
cells (PBMCs) from immunoglobulin A nephropathy (IgAN) patients and healthy subjects (HS). (a) Representative western blotting
experiment for INV. (b) INV protein levels of nine IgAN patients and eight HS assessed by western blotting. In accordance with mRNA
expression levels, INV protein levels are significantly lower in IgAN patients compared with HS (*P¼ 0.006). (c) PTEN protein levels of seven
IgAN patients and seven HS assessed by enzyme-linked immunosorbent assay (ELISA), the protein levels are significantly lower in IgAN
compared with HS (**P¼ 0.007). The histograms represent the mean±s.e.m. of INV and PTEN protein levels.
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IgAN patients and HS. The b-catenin translocation index,
expressed as the ratio of normalized nuclear b-catenin and
normalized cytoplasmatic b-catenin content, was signifi-
cantly higher in IgAN patients (1.2±0.13) compared with
HS (0.32±0.16; P¼ 0.0007) (Figure 5b).

PBMC proliferation assay in IgAN patients

According to the results given above, hyperactivation of both
WNT–b-catenin and PI3K/Akt pathways was shown in IgAN
patients. As these pathways are involved in the cellular
machinery that regulate cell proliferation,28,29 we studied
PBMC proliferation, after mitogenic stimulation with con-
canavalin A, in IgAN patients compared with HS. The PBMC
proliferation index was 2.58±0.087-fold greater in IgAN
patients compared with HS (P¼ 0.004) (Figure 6a and b). In
addition, in all subjects, the PBMC proliferation index was
positively correlated with the ratio of p-Akt to total Akt
(Pearson’s r¼ 0.8443; P¼ 0.0001) (Figure 6c). An enhanced
proliferation rate was also found when we stimulated PBMCs
of IgAN patients with Staphylococcus aureus Cowan (P¼ 0.003)
and pokeweed mitogen (P¼ 0.04) (Figure 6d and e).

WNT signaling pathways in PBMC subpopulations

Our next aim was to investigate which PBMC subpopulation
maybe principally involved in the WNT signaling alteration
seen in IgAN patients. We isolated T-lymphocytes (CD3þ ),
B-lymphocytes (CD19þ ), and monocytes (CD14þ ) from
PBMCs and used a WNT pathway PCR Array (SABiosciences
Corporation, Frederick, MD, USA) to compare the transcript
levels of 84 pathway genes in IgAN patients and HS. We
found a different number and distribution of the modulated
genes in IgAN patients in the three PBMC subsets (Figure
7a–d). Monocytes isolated from IgAN patients showed an
hyperactivation of the WNT pathway compared with HS; in
particular, we found 25 significantly regulated genes, 24 of
which were upregulated (fold change41.5 and Po0.05)
(Supplementary Table S3). These identified genes generated
a top ranked network in IPA (Figure 7e), centered around the

PI3K/Akt pathway. B-lymphocytes in IgAN patients showed
a more blunt modulation, as nine genes were found to be
significantly regulated, eight of them overlapping with altered
monocyte genes (Supplementary Table S4). The WNT
pathway was not significantly altered in T-lymphocytes, as
only five genes were found deregulated in IgAN patients
(Supplementary Table S5).

INV and PTEN protein levels in PBMC subpopulations from
IgAN patients

Next, we measured the protein levels of INV and PTEN in
PBMC subpopulations of IgAN patients and HS. The INV
and PTEN levels were significantly lower in monocytes,
B- and T-lymphocytes isolated from IgAN patients compared
with HS (Po0.04 for all samples) (Figure 8a–c).

DISCUSSION

Several reports have investigated the molecular mechanisms
underlying the complex pathogenesis of IgAN.18,30 However,
to date, only a single report applied high-throughput techno-
logies to identify genes differently regulated in IgAN patients
compared with HS, but the multifactorial interactions and
complex biological networks among these genes were not
examined.19 On the contrary, in this study, a whole-genome
expression analysis was used to uncover new mechanisms
involved with the onset of IgAN. We selected a group of
IgAN patients characterized by normal renal function. This
rationale was used to identify genes associated with disease
onset and not with disease progression. In fact, the inflam-
matory phenotype associated with the deterioration of the
renal function could alter the gene expression profile,
masking the genes that effectively contribute to the disease
onset. In PBLs, we found several genes that were able to
discriminate IgAN patients from HS; these genes generated
highly significant networks and canonical pathways princi-
pally involving WNT–b-catenin and PI3K/Akt pathways. The
specificity of these pathways in IgAN patients compared with
other types of glomerulonephritis was confirmed with GSEA.
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Figure 5 | Activation of Akt and b-catenin nuclear accumulation in peripheral blood mononuclear cells (PBMCs) from
immunoglobulin A nephropathy (IgAN) patients and healthy subjects (HS). (a) Activation of Akt in seven IgAN patients and seven HS,
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Our next aim was to discover whether these pathways
were also aberrantly modulated in PBMCs isolated from an
independent group of 16 IgAN patients and 16 HS, as PBMCs
are known to be principally involved in IgAN pathogenesis.22–24

We specifically found (a) lower INV and PTEN protein levels;
(b) increased Akt protein phosphorylation; (c) augmented
b-catenin translocation rate; and (d) enhanced in vitro
proliferation rate after mitogenic stimulation (Figure 9).
Abnormal WNT signaling was further confirmed in IgAN
patients’ monocytes and to a lesser extent in B-lymphocytes.

The hyperactivation of the PI3K/Akt pathway was shown
by low PTEN levels and by Akt protein activation in PBMCs
of IgAN patients compared with HS. As previously described
in human and animal models, the perturbation of the
PI3k/Akt pathway seems to overlap the phenotypical features
of IgAN.31–33 In line with our results, a recent report on the
study conducted on PBMCs of IgAN patients shows that

nuclear factor-kB, the downstream effector of activated Akt,
has a grater translocation rate.24

Interestingly, PBMCs isolated from IgAN patients showed
a higher proliferation rate compared with the control. The
hyperactivation of these newly identified pathways in IgAN
patients may be responsible for this enhanced proliferation,
and may explain the increased cell number in both bone
marrow and tonsils and the reduced susceptibility to Fas-
mediated apoptosis in IgAN patients.15–17 In particular, the
hyperactivation of WNT signaling in B-lymphocytes from
IgAN patients was confirmed with the PCR array. This
pathway is known to regulate B-lymphocyte proliferation
through lymphoid enhancer factor 1 (LEF-1).34 Surprisingly,
LEF-1 is located within the region that we observed to be
linked with IgAN on chromosome 4q26-31.35

In WNT signaling, WNT molecules bind to members of
the Frizzled receptor protein family to activate dishevelled
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Figure 7 | WNT gene array changes in peripheral blood mononuclear cell (PBMC) subpopulations from immunoglobulin A
nephropathy (IgAN) patients. (a–c) The scatter plots show the log transformation of the relative expression level of each gene (2�DCt)
between IgAN and HS in monocytes, B- and T-lymphocytes. The pink lines indicate the 1.5-fold change in gene expression threshold.
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402 Kidney International (2010) 78, 396–407

o r i g i n a l a r t i c l e SN Cox et al.: WNT–b-catenin and PI3K/Akt pathways in IgA nephropathy



(Dvl).36,37 This activation inhibits b-catenin degradation,
which translocates to the nucleus triggering transcriptional
responses involved in cell survival, proliferation, and

differentiation.34,38,39 Among the WNT–b-catenin genes
identified by genomic analysis, INV reached a high level of
significance. INV protein targets Dvl for degradation, leading
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to reduced stabilized cytoplasmic b-catenin and WNT
signaling.20 Therefore, INV, downregulated at both mRNA
and protein levels in our IgAN patients, represents the
abnormal key regulator of this pathway, suggesting hyper-
activation of WNT–b-catenin signaling. A further dissection
of this aberrancy was carried out with PCR array gene
profiling on PBMC subpopulations, wherein we observed
abnormal WNT signaling in IgAN patients’ monocytes and,
to a lesser extent, in B-lymphocytes. Recent studies highlight
the emerging role of WNT pathway in orchestrating adaptive
immunity in response to microbial stimulation of innate
immune cells.40–43 An hyperactivation of this pathway in
monocytes and B-lymphocytes could lead to a defect in
antigen handling and to abnormal systemic responses to
mucosally encountered antigens, as seen in IgAN pa-
tients.10–12 Monocytes, in particular, could have a pathogenic
role in IgAN, as pIgA aggregates the FcaRI on monocytes in
IgAN patients and induces shedding of the extracellular
domain to form circulating IgA1–FcaRI complexes.44–46

Furthermore, this receptor is activated through PI3K,47

which seems to have a central role in IgAN patients’
monocytes.

In conclusion, the altered modulation of the WNT–b-
catenin and PI3K/Akt pathways in our IgAN patients
may provide new explanations for the mechanisms under-
lying some but not all the features of the immunopatho-
genesis of the disease. Further studies will be needed to better
define the role of hyperactivation of WNT–b-catenin and
PI3K/Akt signal transduction pathways in IgAN. Finally,
these mechanisms could be exploited for the identification of
specific targets for the treatment of the disease.

MATERIALS AND METHODS
Sample donors
A total of 38 biopsy-proven IgAN patients and 34 HS were included
in this study (Table 2). All patients and HS provided their informed
consent. IgAN patients were characterized by normal renal function,
whereas patients with moderate and severe renal damage were
excluded from the study. In addition, subjects suffering from
diabetes, chronic lung disease, cardiovascular diseases, neoplasm, or
inflammatory diseases, and IgAN patients with renal transplantation
receiving corticosteroids and immunosuppressive agents were

excluded from the study. Furthermore, patients suffering from a
viral or bacterial upper respiratory tract infection were also excluded
beforehand. IgAN patients were collected regardless of their having a
familial or sporadic form of the disease.

Complete blood counts were determined by automated proce-
dures for all subjects included in the study. There were no
statistically significant differences between IgAN patients and HS
for all parameters considered (Supplementary Table S6). Further-
more, as described by other investigators, the composition of the
major immunological subsets in IgAN is similar between patients
and controls.14

For microarray analysis and RT-PCR validation, we randomly
selected 12 IgAN patients’ and 8 HS samples. In all, 16 IgAN
patients’ and 16 HS samples were used to evaluate the pathways
emerging from microarray analysis using classical biomolecular
approaches on PBMCs. For this purpose, we randomly selected
subgroups of IgAN patients and HS, as the biological material
obtained from each subject was not sufficient to perform all the
functional genomic studies in triplicate. The remaining blood
samples obtained from 10 IgAN patients and 10 HS were used for
the studies on PBMC subpopulations. Three membranoproliferative
glomerulonephritis type I and three focal segmental glomerulo-
sclerosis patients were used for the GSEA. Those having the same
demographic and clinical features as that of IgAN patients were
selected as disease controls.

The study was carried out according to the principles of the
Declaration of Helsinki and was approved by our institutional ethics
review board.

Sample processing and microarray hybridization
As gene expression profiles of whole blood cells are normally highly
sensitive for ex vivo incubation,48 samples used for microarray were
collected with PAXgene Blood RNA System (PreAnalytiX,
Heidelberg, Germany), in which the RNA-stabilizing reagents in
the collection tube ensure that transcription profiles reflect the
actual physiological state at the time of the blood drawn.49 RNA was
extracted immediately using a PaxGene blood RNA isolation kit
(Qiagen, Valencia, CA, USA). RNA (5mg) was treated using the
Globin Reduction Protocol according to the manufacturer’s
directions (Affymetrix, Santa Clara, CA, USA), and was checked
by electrophoresis using the Agilent 2100 bioanalyzer (Agilent, Palo
Alto, CA, USA). It was then processed and hybridized to the
GeneChip Human Genome U133A oligonucleotide microarray
(Affymetrix) containing 22,283 gene probe sets, representing
12,357 well-characterized human genes and 3800 expressed sequence
tags. Scaled gene expression values were calculated and normalized
using the default setting of Affymetrix Microarray Suite (MAS)
software version 5.0. The data discussed in this publication have
been deposited in NCBIs Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series
accession number GSE14795.

Quantitative RT-PCR analysis
Total RNA (1 mg) isolated from 12 IgAN patients and 8 HS was
reverse transcribed with High-Capacity cDNA Reverse Transcription
(Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions. Quantitative RT-PCR amplification
reactions were performed in triplicate in 25 ml final volumes using
SYBR Green chemistry on an iCycler (Bio-Rad Laboratories,
Hercules, CA, USA) for INV and PTEN. Quantitative RT-PCR was
performed using the QuantiTect Primer Assay (Qiagen, Basel,

Table 2 | Demographic and clinical features of IgAN patients
and healthy subjects included in the studya

IgAN HS

Number 38 34
Male/female 28/10 24/10
Age (years) 41.1±6.9 39.3±9.1
sCr (mg/dl) 0.9±0.2 0.8±0.3
eGFR 110.5±10.7 106±13.1
Proteinuria (24 h; g/l) 0.2±0.02 0.1±0.02
Systolic BP (mm Hg) 115.3±7.8 120±0.5
Diastolic BP (mm Hg) 75.5±8.1 76±4.1

Abbreviations: eGFR, estimated glomerular filtration rate calculated with the
Cockcroft–Gault formula (ml/min per 1.73 m2); IgAN, immunoglobulin A nephro-
pathy patients; HS, healthy subjects; sCr, serum creatinine.
aValues are expressed as mean±s.d.
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Switzerland) and the QuantiFast SYBR Green PCR mix (Qiagen).
Genes were amplified according to the manufacturer’s directions.
The b-actin gene amplification was used as a reference standard to
normalize the target signal. For PCR array, cDNA from 500 mg total
RNA extracted with RNeasy Mini kit (Qiagen) was synthesized using
RT2 first strand kit (SABiosciences Corporation). PCR array (Human
WNT signaling Pathway RT2Profiler PCR Array, SABiosciences
Corporation) was performed according to manufacturer’s instructions
and using three biological replicates for each of the three subpopula-
tions isolated from four IgAN patients and four HS subjects.

PBMC, monocyte, B-, and T-lymphocyte subpopulation
isolation and protein extraction
Peripheral blood mononuclear cells were isolated by density gradient
centrifugation. Monocytes, B-, and T-lymphocytes were obtained
from PBMCs by immunolabelling the sample sequentially with
positive selection kits according to the manufacturer’s specifications
(EasySep, StemCell Technologies, Vancouver, Canada); the obtained
preparations were typically 495% CD3þ CD19þ CD14þ by flow
cytometric analysis (data not shown). Cells were then counted and
their viability was determined by trypan blue staining. Isolated cells
were lysed in RIPA buffer on ice for 30 min and centrifuged at
10,000 g at 4 1C for 10 min. The supernatants, containing total
proteins, were collected and stored at �80 1C. Total protein
concentration was determined with the standard Bradford colori-
metric assay (Bio-Rad Laboratories, Richmond, CA, USA).

Western blot analysis for INV
Aliquots containing 100mg of proteins from each lysate
were subjected to sodium dodecyl sulfate polyacrylamide gel
electrophoresis on a 7.5% gel under reducing conditions and then
electrotransferred onto PVDF membrane (HybondTM, Amersham,
UK). Membranes were probed with primary antibody to INV
(mouse anti-INV antibody, 1:500; Abnova, Tapai, Taiwan) and
incubated with secondary antibody (horseradish peroxidase-
conjugated goat anti-mouse 1:20,000; Bio-Rad Laboratories).
Horseradish peroxidase was detected with LiteAblot (Euroclone,
Milan, Italy) and chemiluminescence was detected on ECL films
(Eastman Kodak, Rochester, NY, USA). The same membranes were
stripped and proteins were rehybridized with anti-b-actin antibody
(1:10,000; Sigma, Milan, Italy, A1978). Images were acquired using a
scanner EPSON Perfection 2580 Photo (EPSON, Long Beach, CA,
USA) and quantified by Image J 1.34 Software (http://rsb.info.nih.-
gov/ij/). The intensity of bands, corresponding to the INV protein,
was normalized to the actin signal.

ELISA for Akt and PTEN
For the Akt measurement, an enzyme-linked immunosorbent assay
(ELISA) kit specific for P-Ser473 Akt was used, according to the
manufacturer’s protocol, and the results were normalized to the
total Akt content (Akt (total) ELISA kit and Akt (pS473) ELISA kit;
Bio-Source, Camarillo, CA, USA). For PTEN, we used a specific
Duo-Set, ELISA development system (R&D Systems, Europe,
Abingdon, UK), according to the manufacturer’s instructions. Data
generated were then normalized to total protein content.

Nuclear b-catenin determination
Cytoplasmic and nuclear extracts were obtained with NE-PER lysis
buffers according to the supplier’s instructions (NE-PER, Perbio,
Bonn, Germany). To evaluate b-catenin concentration in cytoplas-
mic and nuclear extracts, the TiterZyme immunometric assay (EIA)

for b-catenin (Assay Designs, Ann Arbor, MI, USA) was used. Both
cytoplasmic and nuclear values of b-catenin were normalized to the
respective total protein concentration. The translocation rate was
then calculated using the ratio between normalized nuclear
b-catenin and normalized cytoplasmatic b-catenin.

PBMC proliferation test
Isolated PBMCs were plated, at 1� 105 cells per well, in flat-
bottomed 96-well plates (Costar Corning, Corning, NY, USA) in
complete culture medium (RPMI-1640 supplemented with anti-
biotics, 2 mM L-glutamine, 1 mM sodium pyruvate, 1 mM nonessential
amino acids 0.05 mM 2-mercapto-ethanol, 25 mM HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, and 10%
fetal bovine serum) and cultured for 5 days at 37 1C in 5% CO2.
Experiments were performed in quadruplicate, that is, four test wells
with mitogenic stimulation added at a final concentration of 5 mg/ml
of concanavalin A (Sigma, C5275), 0.075% (wt/vol) of Staphylo-
coccus aureus Cowan (Pansorbin, Calbiochem), and 10 mg/ml of
pokeweed mitogen (Sigma, L8777), and four control wells without
stimulation. Cell proliferation was measured by a colorimetric
immunoassay evaluating incorporated nuclear BrdU (5-bromo-2-
deoxyuridine), according to the manufacturer guidelines (Roche
Diagnostics GmbH, Mannheim, Germany). All experiments for each
subject were performed four times, proliferation was expressed as
a proliferation index±s.e.m., calculated as the ratio between the
BrdU absorbance in the test and that in the control wells.

Statistical analysis and bioinformatics
For microarray analysis, the raw expression signals were log-
transformed and filtered-out, if assigned by MAS 5.0 as ‘absent’ in
all samples in the cohort, which resulted in the selection of 15,450
probes out of the original 22,283 set. The preprocessed microarray
data were imported into the R language for statistical analysis
computing (http://www.r-project.org). Genes displaying differential
expression between IgAN patients and HS were detected using a
two-sample t-test. Gene probe sets were sorted after significant
P-value and were adjusted to account for multiple testing using the
FDR method of Storey and Tibshirani.50 Only genes that were
significantly (FDR-adjusted; P-valueo0.005) modulated in IgAN
patients compared with HS, were considered for further analysis.
Two-dimensional hierarchical clustering was performed using
Spotfire decision site 8.0 (http://spotfire.tibco.com). GSEA21 was
performed using GeneSpring GX 9.0 (Agilent Technologies Inc.,
Palo Alto, CA, USA). For this analysis, a gene set was created
starting from genes discriminating IgAN patients from HS,
considering for each gene a fold change value 42. Significance of
differential expression, as determined by the enrichment analysis,
was recalculated 1000 times. A corrected P-value was obtained from
the analysis using the FDR q-value correction. On the basis of this
correction, the cutoff for significance was established at a P-value
p0.05. The PCR array analysis was carried out using the
manufacturer’s data analysis tool (http://www.sabiosciences.com/
pcr/arrayanalysis.php). To assess biological relationships among
genes, we used the Ingenuity Pathway Analysis software (IPA,
Ingenuity System, Redwood City, CA, USA; http://www.ingenuity.
com). IPA computes a score for each network according to the fit of
the set of supplied focus genes (here, genes differently expressed in
IgAN patients). These scores indicate the likelihood of focus genes to
belong to a network versus those obtained by chance. A score 42
indicates a p99% confidence that a focus gene network was not
generated by chance alone. The canonical pathways generated by IPA
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are the most significant for the uploaded data set. Fischer’s exact test
with FDR option was used to calculate the significance of the
canonical pathway.

All values were expressed as the mean±s.e.m. of data obtained
from at least three independent experiments. Two-tailed Student’s
t-test was used to assess differences in biological features among
IgAN patients and HS. Pearson’s correlation test was used to study
continuous variables.
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